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Abstract. The collective response of macroscopic quantum states under perturbation is widely used to study
quantum correlations and cooperative properties, such as defect-induced quantum vortices in Bose–Einstein
condensates and the non-destructive scattering of impurities in superfluids. Superfluorescence (SF),
as a collective effect rooted in dipole–dipole cooperation through virtual photon exchange, leads to the
macroscopic dipole moment (MDM) in high-density dipole ensembles. However, the perturbation response
of the MDM in SF systems remains unknown. Echo-like behavior is observed in a cooperative exciton
ensemble under a controllable perturbation, corresponding to an initial collapse followed by a revival of the
MDM. Such a dynamic response could refer to a phase transition between the macroscopic coherence regime
and the incoherent classical state on a time scale of 10 ps. The echo-like behavior is absent above 100 K due
to the instability of MDM in a strongly dephased exciton ensemble. Experimentally, the MDM response to
perturbations is shown to be controlled by the amplitude and injection time of the perturbations.
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1 Introduction
The phase transition between the macroscopic coherence phase
and the incoherent classical regime in a many-body system is an
important and fundamental topic in physics.1–3 Superfluorescence
(SF),4,5 as a cooperative radiation effect originating from
initially hot dipoles, is an alternative platform to study such
a phase transition involving many-body synchronization in
dipole ensembles.6,7 In the SF process, a macroscopic dipole
moment (MDM) is set up from the vacuum quantum fluctuation
in a correlated dipole gas,8 resulting in short and bright light
pulses with a radiation duration inversely proportional to the

dipole density.9 MDMs have been realized in several many-body
systems,10,11 such as atomic/molecular gases in optical cells,12,13

magneto-plasma in two-dimensional quantum wells,14 nitrogen
vacancy centers in diamond crystals,15,16 excitons in perovskite
microstructures,17,18 and excitons in semiconductor quantum
dots (QDs).19–23 Although MDMs have been demonstrated in
a variety of systems, the collapse and reconstruction dynamics
for MDMs have not yet been revealed. Even more challenging is
the control of the quantum-classical phase transition mentioned
above. An alternative method is to actively apply a controllable
perturbation to the cooperative ensemble and to study the col-
lective response characteristics of the MDM. Similar methods
have been used in other many-body correlated systems, such as
defect-induced quantum vortices in polaritonic condensates24,25

and novel scattering for impurities in superfluids.26,27 Never-
theless, to date, few studies have reported on the perturbation
response of MDM in cooperative dipole ensembles.
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Here, by introducing an active perturbation to a correlated
exciton ensemble, we reveal the collective response of MDM
under a perturbation, i.e., the rapid collapse and revival of
MDM. Such a dynamical echo-like evolution has been exper-
imentally demonstrated in spatially localized systems under
perturbation, unlike the Burnham–Chiao ringing behavior based
on the spontaneous evolution in the absence of perturbation.22

Here the collapse and revival of MDM corresponds to a phase
transition between the many-body quantum regime and the in-
coherent classical state under perturbation. Such a phase tran-
sition is shown to be controllable within a time interval of 10 ps
by adjusting the perturbation time and amplitude. Furthermore,
when the sample temperature is raised to 100 K, MDM cannot be
effectively constructed in the exciton ensemble. Consequently,
these collective responses disappear even when the same pertur-
bation is applied.

2 Materials and Methods
All experiments with the CsPbBr3 superlattice sample are re-
quired to be performed in a high-vacuum closed-helium-cycle
Dewar (MONTANA) at a temperature of 10 K. The excitation
source is a femtosecond laser (300 fs, 80 MHz) with a center
energy of 3.19 eV. The data in Figs. 1(c)–1(e) are measured

using a single-pulse excitation configuration, whereas the other
experimental results in the study are obtained using a double-
pulse excitation configuration. Detailed experimental configura-
tions are shown in Fig. S2 in the Supplementary Material. The
radiation signal is collected through a 50× objective lens
[numerical aperture (NA) = 0.55]. The time-integrated PL spec-
tra [Fig. 1(c)] are measured with a spectrometer (ANDOR,
Newton, SR500i). The time-resolved PL measurements are ob-
tained using a streak camera with a time resolution of 2 ps
(Hamamatsu, C10910). The detailed sample preparation meth-
ods and procedures are described in Ref. 23. Some images of the
superlattice sample are shown in Fig. S1 in the Supplementary
Material. The data in Figs. 2 and 4 are from the same superlat-
tice, and data in Fig. 3 and Fig. S4 in the Supplementary
Material are from a different superlattice on the same substrate;
both samples are of the same type and are self-assembled QD
superlattice microcavities with different lasing thresholds.

3 Results

3.1 Typical Superfluorescence Effect

Our sample is the microsuperlattice assembled by perovskite
QDs23 [Fig. 1(a)]. Recently, the excitons in perovskite nano/

Fig. 1 SF effect in perovskite QD superlattice. (a) Sketch of a superlattice sample assembled by
CsPbBr3 QDs. The size of the individual cubic QDs is ∼10 nm, and the size of the assembled
superlattices is distributed from submicrometers to micrometers. (b) Physical pictures of the ex-
cited states and the different radiation effects in corresponding samples. An exciton is shown as a
pair of “±,” and the MDM is a collective state of a dipole ensemble with an MDM and a synchronous
radiation phase. The yellow halo around the “±” pair presents the virtual light field. Dense excitons in
a QD superlattice share the virtual light fields and from MDM. Black curved arrows describe the
substantial radiation fields, i.e., the SE from individual excitons and the SF from cooperative
excitons. (c) Time-integrated and time-resolved spectra. The SE signals from individual QDs and
the SF signals from an assembled superlattice are measured under excitation densities of 6.1 and
5.8 μJ cm−2 per pulse, respectively. (d), (e) Excitation density ρ versus the time-resolved peak in-
tensity Ipeak and the radiation decay time τrad. The dashed lines are guidelines for the trends y ∝ xm .
Ipeak and τrad are obtained by fitting the time-resolved spectra under different excitation densities.
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microstructures with long coherence time28,29 and strong oscillator
strength30,31 have been reported. Here the CsPbBr3 QD super-
lattice is advantageous for realizing many-body correlation via
virtual photon exchange due to the high stacking density of
perovskite QDs, the long-range order of the QD arrays, and
the low defect density of the superlattice structure (Fig. S1 in
the Supplementary Material). Figure 1(b) shows two different

effects of two types of QD systems, corresponding to the
radiation characteristics of spontaneous emission (SE) from
individual excitons and SF from cooperative excitons. Based on
the unassembled dispersive QDs, the time-integrated SE spec-
trum and the time evolution of the spectral peak [Fig. 1(c)] are
obtained by a spectroscopy system combined with a streak cam-
era. Meanwhile, the SF signals from an assembled superlattice

Fig. 2 Echo-like SF behavior under a controllable disturbance. (a)–(c) Time-resolved photolumi-
nescence (PL) spectra at 10 K. The intensities are normalized by the intensity of the first peak. The
arrows below the horizontal axis indicate the pulsed excitation times. The pulse densities Ex1st and
Ex2nd are fixed at 5.4 and 3 μJ cm−2, respectively. The insets show the radiation energy/time-
resolved mapping data. The row data at the spectral peak center are extracted and plotted in
the corresponding main graph. (d) Comparison of the experimental results (I1, I2, I) and the com-
parison data (IC). The excitation parameters are the same as those in (a). (e) Zooming in the echo-
like part in (d). (f) Disturbance-induced intensity variations (ΔIpeak2, ΔIdip) versus the disturbance
injection moment (Δt). (g) Physical explanation of the echo-like radiation. The red (purple) spheres
represent excitons pumped by Ex1st (Ex2nd). The brown arrows passing across spheres describe
the cooperative radiation phase. The blue halo represents the laser field of Ex2nd, which adds new
hot excitons to the previous cooperative exciton ensemble. The orange (green) background is the
virtual light field shared by the cooperative (hot) excitons. The grid lines represent the QD units in
the superlattice sample.
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are measured at 10 K under nonresonant excitation by a pulsed
laser with a duration of 300 fs and a wavelength of 400 nm.
The spectral peak in the SF signals is much narrower than that
in the SE signals because the QDs in the superlattice sample are
more homogeneous than the dispersive QDs without assembly.23

Furthermore, the radiation decay time τrad for the SF signals is
much shorter than that for the SE signals. In addition, the power
dependencies of the transient peak intensities Ipeak and τrad are
obtained, as shown in Figs. 1(d) and 1(e) in double logarithmic
coordinates. Furthermore, Fig. S3 in the Supplementary
Material demonstrates that the full width at half-maximum of
the SF spectrum exhibits minimal variation with increasing
excitation density. Notably, the superlattice sample has a power
threshold related to the phase transition from SE to SF
(ρth ∼ 1.6 μJ cm−2). Above the threshold, the radiation behavior
of the QD superlattice shows a typical dependence on the
excitation density ρ, i.e., τrad ∝ ρ−1, Ipeak ∝ ρ2. Since the super-
lattice thickness of 0.5 μm does not support the propagation and
reabsorption of SF in the superlattice, no Burnham–Chiao ring
is observed in the time-resolved spectrum.

3.2 Superfluorescence Behavior under a Controllable
Disturbance

Next, we focus on the response of the cooperative dipole ensem-
ble under disturbance. A double-pulse excitation is applied to
combine the many-body cooperation and the phase disturbance
in a QD superlattice (for the experimental configuration, see Fig.
S2 in the Supplementary Material). The first excitation pulse
(Ex1st) is used to trigger the cooperation effect and generate
MDM in the exciton ensemble, whereas the second excitation
pulse (Ex2nd) is introduced to disturb the MDM. Hot dipoles
without a collective phase are introduced into the excited super-
lattice sample containing the MDM. Accordingly, an echo-like
radiation dynamics is observed for the case of a time interval
between the two excitation pulses of Δt ¼ 21 ps [Fig. 2(a)].
In the initial phase, the hot injected dipoles can destroy the
collective order of the dipole moments in the previous dipole
ensemble. However, in the subsequent period, the cooperation
effect is expected to dominate in the correlated dipole system
[Fig. 2(g)]. The accessing moment for the disturbance is
changed to study the disturbance response in Figs. 2(a)–2(c).
Although the disturbance strength (the intensity of the disturba-
tion beam) is fixed, the response changes when Δt increases
from 9 to 121 ps, corresponding to a decreasing magnitude for
the echo-like signals. The earlier the injection time for Ex2nd is,
the larger the magnitude of the MDM that remains in the ensem-
ble to interact with the perturbation, resulting in a stronger feed-
back response.

Meanwhile, we measured the radiation signals induced by
individual excitation pulses [Fig. 2(d)]. Comparative data IC
are plotted by adding the two signals under individual excita-
tions. The apparent differences are between the comparative
data IC and the experimental data I in the magnified picture
[Fig. 2(e)]. For quantitative contrast, the intensity variations
at the dip moment and at the second peak moment (ΔIdip,
ΔIpeak2) are shown in Fig. 2(f). After nonresonant excitation
by Ex2nd, high-energy carriers are generated and relax incoher-
ently to the low-energy exciton state. This leads to a noticeable
collapse of the MDM due to the phase mismatch between the
original excitons and the newly inserted excitons [Fig. 2(g)].
However, a reconstructed MDM can emerge due to the

cooperative nature of high-density excitons in a low-dephasing
situation.

Some comparative effects are discussed below. Note that
the echo-like behavior occurs in a short-time window of 10 ps,
so many slowly varying effects can be excluded. The duration
time for thermal accumulation and diffusion is expected to be
longer than 10 ns in the sample composed of individual QDs as
the units.32 Therefore, thermokinetics related to effects cannot
match the fast response cycle. In addition, the tunneling of
carriers across the nanometer gap between adjacent QDs is
also negligible because the tunneling time without bias voltage
(>100 ps) is much longer than the echo-like response time in
QD superlattices.33 For the case of ρ ∼ 10 μJ cm−2 in the super-
lattice sample, the average distance between excitons is about
23 nm (details of estimation in Part II in the Supplementary
Material), which is less than half the emission wavelength
(λ∕2 ∼ 110 nm in the medium) and larger than the average size
of a single QD (10 nm). The average number of excitons per QD
is not more than 0.1. It has been reported that the Auger lifetime
of excitons in CsPbBr3 QDs with similar population conditions
is on the order of 100 ps,34 which is 1 order of magnitude larger
than the time duration of the echo-like phenomenon. More im-
portantly, the Auger relaxation of the carriers cannot explain
the remarkable revival of radiation signals. However, the pure
dephasing of the exciton ensemble and the rebuilding process
for the MDM by virtual photon exchanges could explain the
echo-like behavior. Furthermore, these processes can occur
on the time scale of picoseconds. It is shown that the time of
cooperation establishment in superlattice samples is shorter than
5 ps in the case of single-pulse excitation.23 Under double-pulse
excitation, the injected excitons disperse into QD lattice points
and induce random virtual light fields covering local areas
[Fig. 2(g)]. These additional fluctuations break the current equi-
librium maintained by the virtual photon exchanges between
the original dipoles. Thus the MDM is initially destroyed by
the virtual light fluctuations, corresponding to the rapid decrease
in radiative intensity. However, in the subsequent period, a new
equilibrium of dipole moments would be established by the
highly efficient exchange of virtual photons, corresponding to
the reconstruction of the MDM and the revival of the radiative
signals.

3.3 Temperature Dependence of Echo-Like SF
Behavior

The perturbation response of the exciton ensemble is studied at
different temperatures (Fig. 3). Interestingly, the disturbance
response is closely related to the collective state of the exciton
ensemble. The level of cooperation in the exciton ensemble can
be controlled by tuning the phonon–exciton scattering rate,
i.e., by varying the temperature-dependent phonon density in
the QD superlattice. In our sample, the MDM faded away
from 10 to 100 K because the dephasing was enhanced by
the phonon–exciton scattering [Fig. 3(a) and Fig. S4 in the
Supplementary Material]. The dip characteristic in the response
signal disappears with increasing temperature [Fig. 3(b)]. The
collective correlation of excitons is crucial for observing the col-
lapse and revival of macroscopic coherence in QD superlattices.
In the absence of the cooperative effect between dipoles, there is
no echo-like response occurring, even under the same perturba-
tion condition.
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3.4 Disturbance Intensity Dependence of Echo-Like SF
Behavior

In addition, the response signal is examined when the magnitude
of the MDM is fixed but the power intensity of the disturbed
beam is changed [Fig. 4(a)]. A system with a large MDM mag-
nitude is selected (Δt ∼ 10 ps). The radiation intensities of the
dip and the second peak are shown in Fig. 4(b) for quantitative
contrast. Interestingly, the most remarkable dip response occurs
in the case of a sizable perturbation intensity. This can be ex-
plained as follows: the dephasing and rebuilding of the MDM
occur together after Ex2nd. When the rates of these two compet-
ing effects are approximately equal, the system transitions to the
dip state, i.e., the inversion point of the radiation intensity. Thus
extreme perturbation cases are unfavorable for remarkable dips.
In the case with weak perturbation (e.g., ρEx2 ¼ 0.6 μJ cm−2),
the insert-induced dephasing of MDM is limited. In the case

with strong perturbation (e.g., ρEx2 ¼ 5.4 μJ cm−2), the rebuild-
ing rate increases rapidly to overcome the dephasing process,
corresponding to the evanescence of the dip.

4 Discussion
Theoretically, the dynamics of the transition dipole moments σ
in the exciton ensemble can be described as follows:23

dσ

dt
¼ −iωσ þ igEN0σz − Γdpσ þ F: (1)

In this equation, ω is the transition frequency, and g is the
coupling coefficient between the excitons and the optical field
E in the superlattice sample. The emission intensity I is propor-
tional to jEj2. N0 is the number of QDs that can participate in
the cooperation effectively. σz is the population inversion of
the exciton ensemble under the mean-field approximation,
i.e., ðσz þ 1Þ∕2 ¼ N∕N0, where N is the excited number.
The term igN0Eσz contributes a significant gain of σ, and
the term Γdpσ represents the dephasing/loss of σ with a rate
of Γdp ¼ Γphon þ Γd−dN þ ΓsυEx2. Γphon is the phonon–exciton
scattering rate, and Γd−d is the dipole–dipole scattering coeffi-
cient of the exciton ensemble. ΓsυEx2 describes the shock of
dephasing rate related to the inserted excitons introduced by
Ex2nd, and υEx2 is the time profile of the number of inserted
excitons. Moreover, the virtual photon exchange induces a fluc-
tuation F in the correlated exciton ensemble, whose form is
F�ðtÞFðt0Þ ¼ βvacN2δðt − t0Þ, where βvac is the scale parameter
for the vacuum quantum fluctuation to trigger cooperation
between dipoles. More details are given in Part III in the
Supplementary Material.

The term ΓsυEx2 plays a crucial role in the collapse progress
of MDM. As shown in Fig. S6(a) in the Supplementary
Material, the simulation results with and without the ΓsυEx2 term
are completely different. Note that the normal scattering terms
are reserved, such as the dipole–dipole scattering term Γd−dN in
the equation of σ and the Auger scattering term κsυEx2 in the
equation of exciton number N. The effects of these normal scat-
tering terms are also enhanced after the injection of hot excitons
by the second excitation pulse. However, they cannot contribute
significantly to Idip [Figs. S6(a) and S6(b) in the Supplementary
Material]. Only the ΓsυEx2 term could induce a transient steep
dip signal due to the activation of the collapse of the MDM by
the virtual light disturbance. In addition, the term F also plays
an important role in the revival region [Figs. S6(c) and S6(d) in
the Supplementary Material]. When the term F is removed,
the calculated value of Ipeak2 is always significantly smaller than
the experimental data, indicating the absence of the revival of
MDM. Moreover, this theoretical model could also simulate the
experimental data shown in Figs. 2(f) and 4(c).

5 Conclusions
In summary, the collapse and reconstruction of the MDM in
perovskite QD-assembled superlattices under an external pertur-
bation is observed, corresponding to 10-ps transitions between
the macroscopic coherence phase and the incoherent classical
regime. Our work extends the methods of cooperative dipole
research to active intervention in many-body correlated ensem-
bles. The ability to control the macroscopic cooperation of
dipoles in perovskite microstructures has potential applications
in bright pulsed light sources and miniature quantum simulators.

Fig. 3 Echo-like SF behavior versus the temperature of crystal
lattice. (a) Temperature-dependent cooperation state of the ex-
citon ensemble, which is determined by the competition of two
mechanisms, i.e., the cooperative mechanism via the virtual
light field (represented by orange/green background) and the
dephasing mechanism via phonon scattering (represented by
the twisted lattice). The state of the exciton ensemble changes
from “cooperative” at 10 K to “partially cooperative” at 50 K and
“noncooperative” at 100 K. (b) Radiation response for an exciton
ensemble at different temperatures. The data shown by solid
lines are excited by Ex1st and Ex2nd with a fixed pulse density of
ρEx1 ¼ 5.4 μJ cm−2, ρEx2 ¼ 2.4 μJ cm−2 and an interval time of
Δt ¼ 20 ps. The data shown by dashed lines are excited by
Ex1st only.
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Data, Materials, and Code Availability
Data underlying the results presented in this paper may be
obtained from the authors upon reasonable request.
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